

INITIAL RELEASE Final Electrical Specifications

LTC1660

Micropower Octal 10-Bit DAC

February 1998

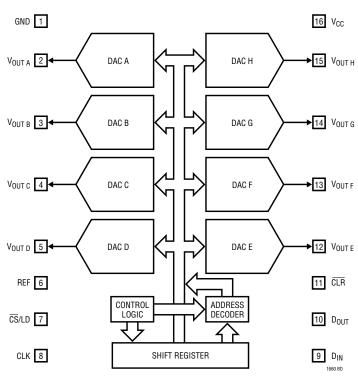
FEATURES

- 8 DACs in the Board Space of an SO-8
- 2.7V to 5.5V Single Supply Operation
- I_{CC(TYP)} = 450μA, Just 56μA per DAC
- 1µA Sleep Mode for Extended Battery Life
- Restores Last <u>DAC</u> Setting After Sleep
- Asynchronous CLR Function
- Power-On Reset Initializes All DACs to Zero
- Rail-to-Rail Voltage Outputs Drive up to 1000pF
- Three-Wire Serial Interface with Schmitt Trigger Inputs and Daisy-Chain Capability
- Differential Nonlinearity: ≤±0.75LSB Max

APPLICATIONS

- Mobile Communications
- Digitally Controlled Amplifiers and Attenuators
- Portable Battery-Powered Instruments
- Automatic Calibration for Manufacturing
- Remote Industrial Devices

BLOCK DIAGRAM

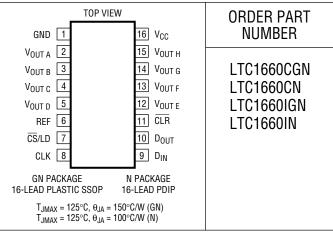

DESCRIPTION

The LTC[®]1660 integrates eight high quality addressable 10-bit digital-to-analog converters (DACs) in a single tiny 16-pin Narrow SSOP package. Each buffered DAC consumes just 56 μ A total supply current, yet is capable of supplying DC output currents in excess of 5mA and reliably driving capacitive loads up to 1000pF.

Linear Technology's proprietary, inherently monotonic architecture provides excellent linearity while allowing for an exceptionally small external form factor.

Ultralow supply current, power-saving Sleep Mode and extremely compact size make the LTC1660 ideal for battery-powered applications, while its straightforward usability, high performance and wide supply range make it an excellent choice as a general purpose converter.

C, LTC and LT are registered trademarks of Linear Technology Corporation.


TECHNOLOGY

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

ABSOLUTE MAXIMUM RATINGS

(Note 1)
V_{CC} to GND
Logic Inputs to GND0.5V to 7.5V
$V_{OUT A}$ to $V_{OUT H}$, REF0.5V to V_{CC} + 0.5V
Maximum Junction Temperature 125°C
Operating Temperature Range
LTC1660C 0°C to 70°C
LTC1660I –40°C to 85°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 sec) 300°C

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS

 V_{CC} = 2.7V to 5.5V, V_{REF} \leq $V_{CC},$ V_{OUT} Unloaded, T_A = T_{MIN} to $T_{MAX},$ unless otherwise noted.

SYMBOL	PARAMETER CONDITIONS		MIN	ТҮР	MAX	UNITS
Accuracy			1			
	Resolution		• 10			Bits
	Monotonicity	$V_{\text{REF}} \le V_{\text{CC}} - 0.1V \text{ (Note 2)}$	• 10			Bits
DNL	Differential Nonlinearity	$V_{\text{REF}} \le V_{\text{CC}} - 0.1V \text{ (Note 2)}$	•	±0.1	±0.75	LSB
INL	Integral Nonlinearity	$V_{\text{REF}} \le V_{\text{CC}} - 0.1V \text{ (Note 2)}$	•	±0.6	±2.5	LSB
V _{OS}	Offset Error	Measured at Code 20	•	±10	±30	mV
	V _{OS} Temperature Coefficient			±15		μV/°C
FSE	Full-Scale Error	V _{CC} = 5V, V _{REF} = 4.096V	•	±3	±15	LSB
	Full-Scale Error Temperature Coefficient			±30		μV/°C
Reference	e Input		i			
	Input Voltage Range		• 0		V _{CC}	V
	Resistance	Not in Sleep Mode	• 35	65		kΩ
	Capacitance	(Note 6)	•	15		pF
I _{REF}	Reference Current	Sleep Mode	•	0.001	1	μA
Power Su	pply		I			
V _{CC}	Positive Supply Voltage	For Specified Performance	• 2.7		5.5	V
I _{CC}	Supply Current	V _{CC} = 5V (Note 3)	•	450	730	μA
		V _{CC} = 3V (Note 3)	•	340	550	μA
		Sleep Mode (Note 3)	•	1	3	μA
DC Perfor	mance					
	Short-Circuit Current Low	V _{OUT} Shorted to GND (Sourcing)	•		100	mA
	Short-Circuit Current High	V _{OUT} Shorted to V _{CC} (Sinking)	•		120	mA
	Output Impedance to GND	Input Code = 0, V _{CC} = 5V		68		Ω
		Input Code = 0, V _{CC} = 3V		158		Ω
	Output Impedance to V _{CC}	Input Code = 1023, $V_{CC} = 5V$, $V_{REF} = 5.1V$		85		Ω
		Input Code = 1023, V_{CC} = 3V, V_{REF} = 3.1V		125		Ω

ELECTRICAL CHARACTERISTICS

 V_{CC} = 2.7V to 5.5V, $V_{REF} \leq V_{CC}, ~V_{OUT}$ Unloaded, T_A = T_{MIN} to $T_{MAX},$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
AC Perfor	mance						<u> </u>
	Voltage Output Slew Rate	Rising (Notes 4, 5) Falling (Notes 4, 5)			0.60 0.25		V/µs V/µs
	Voltage Output Settling Time	To ±0.5LSB (Notes 4, 5)			30		μs
Digital I/C)		·				
V _{IH}	Digital Input High Voltage	V _{CC} = 2.7V to 5.5V V _{CC} = 2.7V to 3.6V	•	2.4 2.0			V V
V _{IL}	Digital Input Low Voltage	V_{CC} = 4.5V to 5.5V V_{CC} = 2.7V to 5.5V	•			0.8 0.6	V V
V _{OH}	Digital Output High Voltage	$I_{OUT} = -1mA, D_{OUT} Only$	•	V _{CC} – 1			V
V _{OL}	Digital Output Low Voltage	I _{OUT} = 1mA, D _{OUT} Only	•			0.4	V
I _{LK}	Digital Input Leakage	$V_{IN} = GND$ to V_{CC}	•			±10	μA
CIN	Digital Input Capacitance	(Note 6)	•			10	pF

TIMING CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS			ТҮР	MAX	UNITS
V _{CC} = 4.5\	/ to 5.5V	I					
t ₁	D _{IN} Valid to CLK Setup		•	40			ns
t ₂	D _{IN} Valid to CLK Hold		•	0			ns
t ₃	CLK High Time	(Note 6)	•	30			ns
t ₄	CLK Low Time	(Note 6)	•	30			ns
t ₅	CS/LD Pulse Width	(Note 6)	•	30			ns
t ₆	LSB CLK High to $\overline{\text{CS}}$ /LD High	(Note 6)	•	30			ns
t ₇	CS/LD Low to CLK High	(Note 6)	•	30			ns
t ₈	D _{OUT} Propagation Delay	$C_{LOAD} = 15 pF$ (Note 6)	•	5		80	ns
t9	CLK Low to \overline{CS} /LD Low	(Note 6)	•	20			ns
t ₁₀	CLR Pulse Width	(Note 6)	•	40			ns
V _{CC} = 2.71	/ to 5.5V						
t ₁	D _{IN} Valid to CLK Setup	(Note 6)	•	60			ns
t ₂	D _{IN} Valid to CLK Hold	(Note 6)	•	0			ns
t ₃	CLK High Time	(Note 6)	•	50			ns
t ₄	CLK Low Time	(Note 6)	•	50			ns
t ₅	CS/LD Pulse Width	(Note 6)	•	50			ns
t ₆	LSB CLK High to $\overline{\text{CS}}/\text{LD}$ High	(Note 6)	•	50			ns
t ₇	CS/LD Low to CLK High	(Note 6)	•	50			ns
t ₈	D _{OUT} Propagation Delay	$C_{LOAD} = 15 pF$ (Note 6)	•	5		150	ns
t9	CLK Low to CS/LD Low	(Note 6)	•	30			ns
t ₁₀	CLR Pulse Width	(Note 6)	•	60			ns

The \bullet denotes specifications which apply over the full operating temperature range.

Note 1: Absolute maximum ratings are those values beyond which the life of a device may be impaired.

ELECTRICAL CHARACTERISTICS

Note 2: Nonlinearity and monotonicity are defined from the first code that is greater than or equal to the maximum offset specification $(k_L = V_{OS(MAX)}/V_{LSB}$ rounded to the next higher integer) to code 1023 (full scale). See Applications Information. **Note 3:** Digital inputs at 0V or V_{CC}. Note 4: Load is $10k\Omega$ in parallel with 100pF. Note 5: $V_{CC} = V_{REF} = 5V$. DAC switched between $0.1V_{FS}$ and $0.9V_{FS}$, i.e., codes k = 102 and k = 922. Note 6: Guaranteed by design and not subject to test.

PIN FUNCTIONS

GND (Pin 1): System Ground.

V_{OUT A} to V_{OUT H} (Pins 2-5 and 12-15): DAC Analog Voltage Outputs. The output range is

0 to $V_{\text{REF}}\left(1 - \frac{1}{1024}\right)$

REF (Pin 6): Reference Voltage Input. $0V \le V_{REF} \le V_{CC}$.

 $\overline{\text{CS}/\text{LD}}$ (Pin 7): Serial Interface Chip Select/Load Input. When $\overline{\text{CS}/\text{LD}}$ is low, CLK is enabled for shifting data on D_{IN} into the register. When $\overline{\text{CS}/\text{LD}}$ is pulled high, CLK is disabled and data is loaded from the shift register into the specified DAC register(s), updating the analog output(s). CMOS and TTL compatible.

CLK (Pin 8): Serial Interface Clock Input. CMOS and TTL compatible.

 \mathbf{D}_{IN} (Pin 9): Serial Interface Data Input. Data on the \mathbf{D}_{IN} pin is shifted into the 16-bit register on the rising edge of CLK. CMOS and TTL compatible.

 D_{OUT} (Pin 10): Serial Interface Data Output. Data appears on D_{OUT} 16 positive CLK edges after being applied to D_{IN} . May be tied to D_{IN} of another LTC1660 for daisy-chain operaton. CMOS and TTL compatible.

CLR (Pin 11): Asynchronous Clear Input. All internal shift and DAC registers are cleared to zero at the falling edge of the CLR signal, forcing the analog outputs to zero scale. CMOS and TTL compatible.

V_{CC} (Pin 16): Supply Voltage Input. $2.7V \le V_{CC} \le 5.5V$.

DEFINITIONS

Differential Nonlinearity (DNL): The difference between the measured change and the ideal 1LSB change for any two adjacent codes. The DNL error between any two codes is calculated as follows:

 $\mathsf{DNL} = (\Delta \mathsf{V}_{\mathsf{OUT}} - \mathsf{LSB})/\mathsf{LSB}$

Where ΔV_{OUT} is the measured voltage difference between two adjacent codes.

Digital Feedthrough: The glitch that appears at the analog output caused by AC coupling from the digital inputs when they change state. The area of the glitch is specified in (nV)(sec).

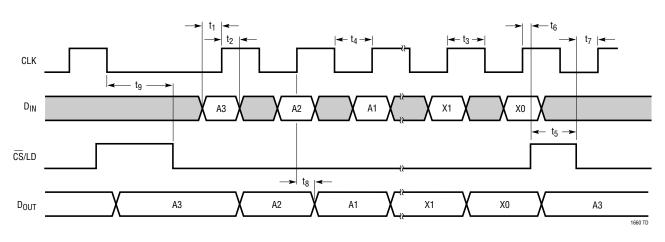
Full-Scale Error (FSE): The deviation of the actual fullscale voltage from ideal. FSE includes the effects of offset and gain errors (see Applications Information). **Integral Nonlinearity (INL):** The deviation from a straight line passing through the endpoints of the DAC transfer curve (Endpoint INL). Because the output cannot go below zero, the linearity is measured between full scale and the lowest code which guarantees the output will be greater than zero. The INL error at a given input code is calculated as follows:

 $\mathsf{INL} = [\mathsf{V}_{\mathsf{OUT}} - \mathsf{V}_{\mathsf{OS}} - (\mathsf{V}_{\mathsf{FS}} - \mathsf{V}_{\mathsf{OS}})(\mathsf{code}/\mathsf{1023})]/\mathsf{LSB}$

Where $V_{\mbox{OUT}}$ is the output voltage of the DAC measured at the given input code.

Least Significant Bit (LSB): The ideal voltage difference between two successive codes.

$$LSB = V_{REF}/1024$$


DEFINITIONS

Resolution (n): Defines the number of DAC output states (2ⁿ) that divide the full-scale range. Resolution does not imply linearity.

Voltage Offset Error (V_{OS}): Nominally, the voltage at the output when the DAC is loaded with all zeros. A single

supply DAC can have a true negative offset, but the output cannot go below zero (see Applications Information).

For this reason, single supply DAC offset is measured at the lowest code that guarantees the output will be greater than zero.

TIMING DIAGRAM

OPERATION

Transfer Function

The ideal transfer function for the LTC1660 is

$$V_{OUT(IDEAL)} = \left(\frac{k}{1024}\right) V_{REF}$$

where k is the decimal equivalent of the binary DAC input code D9-D0 and V_{REF} is the voltage at REF (Pin 6).

Serial Interface

Data on the D_{IN} input is shifted into the 16-bit register (\overline{CS}/LD must be held low) on the positive edge of CLK. The 4-bit DAC address, A3-A0, is loaded first (see Table 2), then the 10-bit input code, D9-D0, ordered MSB-to-LSB in each case. Two don't-care bits, X1 and X0, are loaded last. When the full 16-bit word has been shifted in, \overline{CS}/LD is pulled high, loading the DAC register with the word and causing the addressed DAC output(s) to update (see Figure 1). The clock is disabled internally when \overline{CS}/LD is high. Note: CLK must be low before \overline{CS}/LD is pulled low.

The buffered serial output of the shift register is available on the D_{OUT} pin, which swings from GND to $V_{CC}.$ Data appears on D_{OUT} 16 positive CLK edges after being applied to $D_{IN}.$

Multiple LTC1660's can be controlled from a single 3-wire serial port (i.e., CLK, D_{IN} and \overline{CS}/LD) by using the included "daisy-chain" facility. A series of *m* chips is configured by connecting each D_{OUT} (except the last) to D_{IN} of the next chip, forming a single 16*m*-bit shift register. The CLK and \overline{CS}/LD signals are common to all chips in the chain. In use, \overline{CS}/LD is held low while *m* 16-bit words are clocked to D_{IN} of the first chip; \overline{CS}/LD is then pulled high, updating all of them simultaneously.

Sleep Mode

DAC address 1110_b is reserved for the special Sleep instruction (see Table 2). In this mode, internal bias currents are disabled while all digital circuitry stays fully active; static power consumption is thus virtually

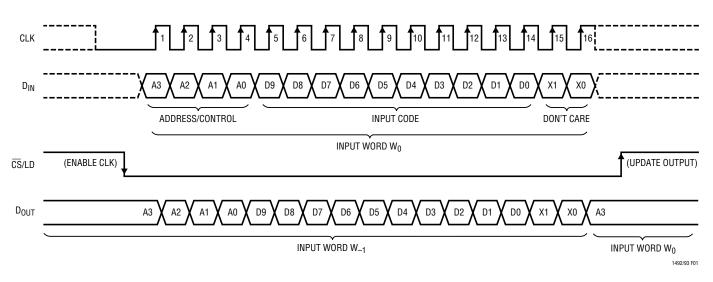


Figure 1. Register Loading Sequence

eliminated. The analog outputs are set in a high impedance state and all DAC settings are retained in memory so that when Sleep mode is exited, the outputs of DACs not updated by the Wake command are restored to their last active state.

Sleep mode is initiated by performing a load sequence to address 1110_b (the DAC input word D9-D0 is ignored). Once in Sleep mode, a load sequence to any other address (including "No Change" addresses 0000_b and $1001-1101_b$) causes the LTC1660 to Wake. It is possible to keep one or more chips of a daisy chain in continuous Sleep mode by giving the Sleep instruction to these chips each time the active chips in the chain are updated.

Table 1. LTC1660 Input Word

A3	A2	A1	A0	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	X1	X0
													\frown	\sim	
Address/Control				Input Code						Don't					
												Ca	ire		

Voltage Outputs

Each of the eight rail-to-rail output amplifiers contained in the LTC1660 can source or sink up to 5mA. The outputs swing to within a few millivolts of either supply rail when unloaded and have an equivalent output resistance of 85Ω when driving a load to the rails. The output amplifiers are stable driving capacitive loads up to 1000pF.

A small resistor placed in series with the output can be used to achieve stability for any load capacitance. For example, a 0.1μ F load can be successfully driven by inserting a 110Ω resistor. The phase margin of the resulting circuit is 45° , and increases monotonically from this point if larger values of resistance, capacitance or both are substituted for the values given.

Table 2. DAC Address/Control Functions

ADDRESS/CONTROL					
A3	A2	A1	AO	DAC STATUS	SLEEP STATUS
0	0	0	0	No Change	Wake
0	0	0	1	Load DAC A	Wake
0	0	1	0	Load DAC B	Wake
0	0	1	1	Load DAC C	Wake
0	1	0	0	Load DAC D	Wake
0	1	0	1	Load DAC E	Wake
0	1	1	0	Load DAC F	Wake
0	1	1	1	Load DAC G	Wake
1	0	0	0	Load DAC H	Wake
1	0	0	1	No Change	Wake
1	0	1	0	No Change	Wake
1	0	1	1	No Change	Wake
1	1	0	0	No Change	Wake
1	1	0	1	No Change	Wake
1	1	1	0	No Change	Sleep
1	1	1	1	Load ALL DACs with Same 10-Bit Code	Wake

APPLICATIONS INFORMATION

Rail-to-Rail Output Considerations

In any rail-to-rail DAC, the output swing is limited to voltages within the supply range.

If the DAC offset is negative, the output for the lowest codes limits at OV as shown in Figure 2b.

Similarly, limiting can occur near full scale when the REF pin is tied to V_{CC} . If $V_{REF} = V_{CC}$ and the DAC full-scale error

(FSE) is positive, the output for the highest codes limits at V_{CC} as shown in Figure 2c. No full-scale limiting can occur if V_{REF} is less than V_{CC} – FSE.

Offset and linearity are defined and tested over the region of the DAC transfer function where no output limiting can occur.

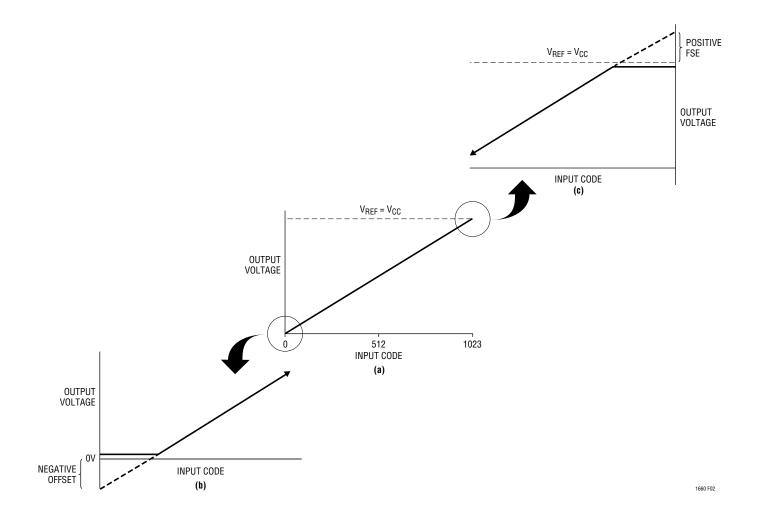
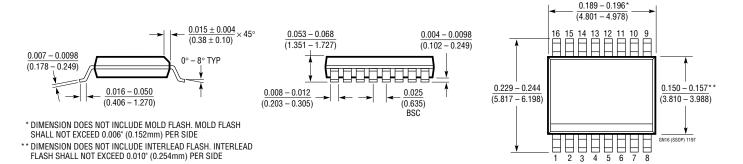
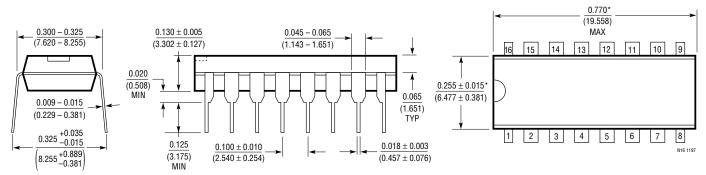



Figure 2. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect of Negative Offset for Codes Near Zero Scale (c) Effect of Positive Full-Scale Error for Input Codes Near Full Scale When V_{REF} = V_{CC}



PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

GN Package 16-Lead Plastic SSOP (Narrow 0.150) (LTC DWG # 05-08-1641)

N Package 16-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1446/LTC1446L	Dual 12-Bit V_{OUT} DACs in SO-8 Package with Internal Reference	LTC1446: V_{CC} = 4.5V to 5.5V, V_{OUT} = 0V to 4.095V LTC1446L: V_{CC} = 2.7V to 5.5V, V_{OUT} = 0V to 2.5V
LTC1448	Dual 12-Bit V _{OUT} DAC in SO-8 Package	V_{CC} = 2.7V to 5.5V, External Reference Can Be Tied to V_{CC}
LTC1454/LTC1454L	Dual 12-Bit $V_{\mbox{OUT}}$ DACs in SO-16 Package with Added Functionality	LTC1454: V_{CC} = 4.5V to 5.5V, V_{OUT} = 0V to 4.095V LTC1454L: V_{CC} = 2.7V to 5.5V, V_{OUT} = 0V to 2.5V
LTC1458/LTC1458L	Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality	LTC1458: V_{CC} = 4.5V to 5.5V, V_{OUT} = 0V to 4.095V LTC1458L: V_{CC} = 2.7V to 5.5V, V_{OUT} = 0V to 2.5V
LTC1590	Dual 12-Bit I _{OUT} DAC in SO-16 Package	V _{CC} = 4.5V to 5.5V, 4-Quadrant Multiplication
LTC1659	Single Rail-to-Rail 12-Bit V_{OUT} DAC in 8-Lead MSOP Package V_{CC} : 2.7V to 5.5V	Low Power Multiplying $V_{\rm OUT}$ DAC. Output Swings from GND to REF. REF Input Can Be Tied to $V_{\rm CC}$

1660i LT/TP 0298 4K • PRINTED IN THE USA TECHNOLOGY © LINEAR TECHNOLOGY CORPORATION 1998